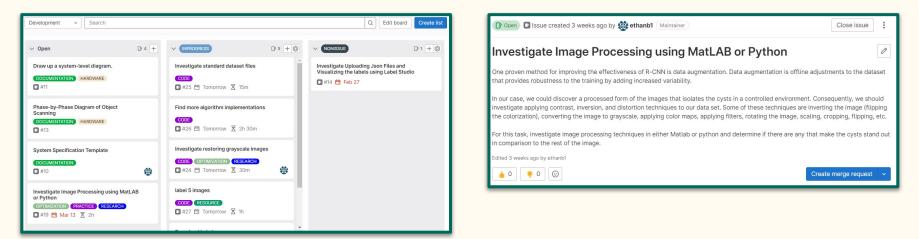


Project Plan

Senior Design 491: Soybean Parasitic Cyst Detector

sddec23-10: Chris Cannon, Ethan Baranowski, Katherine Moretina, Matthew Kim


Problem Statement

- Develop a deep learning algorithm designed for small object detection to determine how many parasitic cysts are on the roots of soybean plants.
- Will also create a device to integrate image capturing with the machine learning algorithm.
- Increases productivity in farms.
- Reduces the amount of unnecessary pesticides.
- Helps farmers accurately fertilize their crops.

Project Management/Tracking Procedures

- Agile (SCRUM)
 - \circ 1-week sprints
 - \circ ~ Use Gitlab to track issues
 - \circ ~ Weekly meetings to develop backlog & discuss work
- Use Gitlab repository for code and data set

Task Decomposition

- Task 1: Develop a Deep Learning Model
 - Research and choose a deep learning algorithm
 - Label our existing data
 - \circ Implement our model in our environment
 - \circ Train the model on our data
 - $\circ \quad \ \ {\rm Validate} \ \& \ test \ the \ model$
 - Optimize the code for enhanced improvement
 - Implement additional models for comparisons. (Optional)

- Task 2: Develop a Prototype Soybean Scanner
 - Set up a controlled environment for image capturing
 - Develop scanner that can scan all sides of the plant
 - Apply the machine learning detector to the scanned sides to accurately count of the parasitic cysts.
 - Optimize the prototype to be user friendly and intuitive.

Project Proposed Milestones, Metrics, and Evaluation Criteria

Milestone	Description	Metrics
1: Background Research	Progress is complete when we understand artificial intelligence, machine learning, and deep learning.	Progression through team training and onboarding tasks.
2: Algorithm Research	Progress is complete when the team members have sufficient understanding of machine learning algorithms to evaluate multiple different deep learning approaches and assess which one is best for our project.	Number of algorithms researched & evaluated (3 per person).
3: Algorithm Implementation	Progress is complete when a Faster R-CNN implementation/template is found on GitHub and is runnable on our computers.	Progression through developing a functional Faster R-CNN implementation.
4: Labeling Data (149 total images)	Progress is complete when all the data has all the cysts on the plants labeled.	Number of completed images.
5: Algorithm Training	Progress is complete when we have developed a model based on the implementation in milestone 3, trained on our soybean cyst data.	Progression through training set of soybean cyst data.

Project Proposed Milestones, Metrics, and Evaluation Criteria

Milestone	Description	Metrics
6: Algorithm Testing (50%+ accuracy)	Progress is complete when the algorithm sufficiently hits a high accuracy rating (For our purposes it is currently set at 50% subject to change).	Evaluation of results should show accuracy of model should be at least 50%.
7: Hardware Design	Progress is complete when the Hardware System-Level Diagram is properly developed and finalized.	Iterative development process with improving diagrams and ideas.
8: Hardware Implementation (50%+ accuracy)	Progress is complete when we have a working prototype of the image capturing device that can run the machine learning model.	Progression of creating the design from the previous milestone.
9: Hardware Optimization	Progress is complete when the hardware implementation is friendly and can be run by not an engineer.	Iterative development process dedicated to improvements over functionality.
10: Algorithm Optimization	Progress is complete once the counting accuracy of our algorithm has increased by a significant amount (5% or more).	Increase in accuracy of model.
11: Documentation (Website)	Document our design process, implementation, hardware & software designs, and provide next steps.	Progression of team managed website including documentation from each of the stages of the project.

Proj	e	et	T	in	nel	in	.e	/ ;	So	eh	le	d١	ul	e							Sprint Number (32 Total Sprints)	Milestone Complete	
Gantt (Cha	art																			Sprint 4	Milestone 1: Background Complete	Research
Project																					Sprint 9	Milestone 2: Algorithm F	Research
Select a period to highlight at r	ight Alegend PLAN START	describing the PLAN DURATIO N	ACTUAL	ACTUAL DURATIO N	Period Highli PERCENT COMPLETE		r	Plan Dui	5 6	7 8	9 9	otual Start	12 1	3 14 1	Complete	17 18	19 20	ual (beyond pla		% Complete (Sprint 12	Milestone 3: Algorithm Implementation	
Milestone 1: Background Research Complete	1	4	1	4	100%			-															
Milestone 2: Algorithm Research	4	4	4	4	100%					۰.		<i></i>									Sprint 13	Milestone 4: Labeling Da	ita
Milestone 3: Algorithm Implementation	8	3	8	З	66%																		
Milestone 4: Labeling Data	10	4			25%												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Sprint 15	Milestone 7: Hardware D	Design
Milestone 5: Algorithm Training	13	7			0%																		
Milestone 6: Algorithm Testing	20	4			0%																Sprint 20	Milestone 5: Algorithm 7	raining
Milestone 7: Hardware Design	12	3			0%																0	Milanta a Caluarith a T	1
Milestone 8: Hardware Implementation	15	9			0%																Sprint 24	Milestone 6: Algorithm 7 Milestone 8: Hardware	esting
Milestone 9: Hardware Optimization	24	5			0%																	Implementation	
Milestone 10: Algorithm Optimization	24	5			0%																		
Milestone 11: Documentation	5	27			10%																Sprint 28	Milestone 9: Hardware 0 Milestone 10: Algorithm	ptimization
																						Optimization	
																					Sprint 32	Milestone 11: Documenta	ation

Risks And Risk Management/Mitigation

Task 1 - Developing a Deep Learning Model

Risk	Probability	Mitigation Plan
Available data is not enough to train an accurate algorithm on.	0.8	Develop a proof-of-concept model and allow the project administrators to collect more data over time to improve the model.
Labeling tools are incompatible with algorithm implementation.	0.1	N/A
Our algorithm does not provide a sufficient amount of accuracy rating.	0.1	Since we have a relatively low goal accuracy (\sim 50%), even with our limited dataset we should be able to achieve this.

Task 2 - Developing a Prototype Device

Risk	Probability	Mitigation Plan
Our hardware does not have enough resolution for machine learning to detect.	0.5	Doing market research to find a high-resolution camera at an affordable price This may violate some of our requirements budget wise.

General Risk

Risk	Probability	Mitigation Plan
Less predictability, especially since no one has a strong background in this area	0.4	Spending time researching machine learning can help us anticipate issues we might have developing and working on an algorithm

Personnel Effort Requirements

Task: Develop a Deep Learning Model	Person-hours	Task: Develop a Prototype Soybean ScannerPerson-hours		
Research and choose a deep learning algorithm/model	20	Set up a controlled environment for image capturing	10	
Label our existing data	40	Develop scanner that can scan all sides of the plant	20	
Implement our model in our environment	10-15	Apply the machine learning detector to	15	
Train the model on our data	40	the scanned sides to accurately count of the parasitic cysts.		
Validate & test the model	20		10	
Optimize the code for enhanced improvement	10	Optimize the prototype to be user friendly and intuitive.	10	
(Optionally) implement additional models	60	Hardware Documentation	50	
for comparisons.		Total Hours:	105	
Software Documentation	50		<u> </u>	
Total Hours:	190-255	Total Project Hours:	295-360	

Other Resource Requirements

- Pictures of soybean roots to create a data set.
- Computing platform to train the algorithm.
- Colorized platform for Soybean plant image capturing.
- Camera
- Raspberry Pi with usb adapter
- Small motor
- Labeling tool
- Power source
- Grabber or tools to hold the soybean root

Questions?

